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Abstract

Discrete choice problems with complementarities are prevalent in economics but

the large dimensionality of potential solutions substantially limits the scope of their

application. We define and characterize a general class that we term combinatorial

discrete choice problems and show that it covers many existing problems in economics

and engineering. We propose single crossing differences (SCD) as the sufficient condi-

tion to guarantee that simple recursive procedures can find the global maximum. We

introduce an algorithm motivated by this condition and show how it can be used to

revisit problems whose computation was deemed infeasible before. We finally discuss

results for a class of games characterized by these sufficient conditions.
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1 Introduction

Discrete choice combinatorial problems are ubiquitous in economics. Across fields such as

Consumer Theory, Industrial Organization, and International Trade researchers employ dis-

crete choice formulations to model consumer choice problems, input decisions and plant loca-

tion choices with positive or negative complementarities. Complementarities make decisions

interdependent leading to a potential solution space that grows exponentially in the number

of choices. This makes solving these problems very hard or apparently even computationally

infeasible.1

We show that the same complementarities that dissuaded economists from these problems

are key to handling combinatorial optimization problems on a discrete domain. We define a

general class of problems that we term combinatorial discrete choice problems, that includes

well known problems and models in economics and engineering. In these problems the agent

(firm, consumer, etc) maximizes a return function that is defined over an n-dimensional

Boolean domain representing the multiple choices that the agents may make. In the most

general terms we can write the problem as follows:

I? = arg max
I∈Bn

Π(I) (1)

where Bn is the set of all Boolean vectors of dimension n and I denotes one such vector.

Π is the return function that maps a Boolean vector into overall profits. Depending on the

application Ii = 1 could be interpreted as there being a store in location i or a firm exporting

to country i or any other binary decision.2

The key restriction we impose is single crossing differences (SCD) of the return function.

The importance of single crossing differences in comparative statics analysis in mechanism

design has been widely discussed (see Milgrom (2004)), however this paper is the first to

discuss their role in solving combinatorial discrete choice problems in economics. In the

context of this paper, SCD appear as an intuitive restriction on the return function Π in

equation (1). If we interpret Ii = 1 as the decision to operate a store in location i then SCD of

the return function Π implies that if decision i has a positive marginal value for some vector

I, then either this marginal value has to remain positive as more store locations are added

1Combinatorial problems are typically NP-hard (eg. in the Boolean domain: 2N combinations). In
addition, a well-known theorem from combinatorial optimization implies that without additional structure no
solution method can perform better than random search (see no free-lunch Theorem Wolpert and Macready
(1997)).

2Note that this formulation is surprisingly general: in many applications one can maximize out the
intensive margin decision conditional on the extensive margin decision and then, in a second step, rewrite
the problem in the form of equation (1) to solve the extensive margin problem.
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or it has to remain positive as other store locations are closed, for all i. In other words SCD

imposes a restriction on the strength and direction of complementarities between different

decisions i. Both supermodularity and submodularity of the return function are sufficient

conditions for it to exhibit single crossing differences: a supermodular return function implies

that the marginal value of decision i is weakly increasing in the number of other coordinates

set to 1, while submodularity implies the converse. Both conditions are of wide theoretical

and practical use in economics in all contexts in which complementarities between choices

are important.

To solve combinatorial discrete choice problems as defined in equation (1) we introduce

a new recursive mapping defined on the n-dimensional Boolean lattice Bn. We then present

three key results on the properties of this mapping when the return function exhibits the

single crossing differences property.

The first two results, presented in Theorems 1 and 2 guarantee the existence of a simple

recursive procedure that can be used to find the global maximum of the objective Π. Theorem

1 implies that iterating our mapping on a Boolean lattice it will always converge to a subset

of the potential solution space that contains the optimizing vector under the sole condition

that the return function exhibits the single crossing differences property. Theorem 1 can then

be viewed as method to reduce the set of potential optimizing vectors I by exploiting the

structure provided by the single crossing differences assumption. The basic intuition is that

by evaluating the objective function at points of maximal complementarities and exploiting

the monotonicity assumption many potential solutions can often be excluded without having

to evaluate them. While the resulting set contains the optimum it may still be so large that

evaluating the objective function at all of its elements is infeasible. Theorem 2 illustrates

that an extension of this algorithm that applies it repeatedly by partitioning the latticeit

outputs in a particular way always delivers the unique maximizing vector.

We finally discuss results for a class of games in which the payoff function of each player

exhibits the single crossing differences property in own strategies while the joint strategy

space features decreasing differences. A pure strategy Nash equilibrium can be shown to

exist in all such games. Our algorithm is shown to always find such an equilibrium point. A

special case of this class are games in which the payoff function of one player is submodular in

own strategies and there are decreasing differences in the joint strategy space of the players.

We term such games “submodular” games.

An array of papers in Industrial Organization and International Trade present models that

involve the solution of combinatorial discrete choice problems. In Industrial Organization

both Holmes (2011) and Jia (2008) develop models in which a chain store needs to make an

entry decision across a multitude of spatially distributed markets and where market specific
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profits are interdependent. In particular Holmes (2011) models business stealing effects

between different chain stores’ branches, while Jia (2008) highlights positive spillovers from

economies of scale. Hendel (1999) is an early paper formulating a “multiple discrete choice”

problem pertaining to the optimal number of computers per brand to be purchased by a

firm. In international trade a range of new papers studying the optimal choice of production

plants across countries naturally involve combinatorial discrete choice problems. Arkolakis

et al. (2013) and Tintelnot (2016) are examples. Antras et al. (2014) model the optimal

input choices of a firm from a menu of international suppliers as a combinatorial discrete

choice problem. In addition a nascent literature on global value chains formulates firm

problems that can be written as combinatorial discrete choice problems such as in Antràs

and de Gortari (2017). Morales et al. (2015) features a model of the export choice of firms

that becomes a combinatorial one once some of the usual gravity assumptions are relaxed.3

A procedure developed in Jia (2008) constitutes the only solution method for the class

of combinatorial discrete choice problems that appears in the above papers. The method

in this paper generalizes the approach introduced in Jia (2008). We formally show that the

procedure in Jia (2008) applies to functions that exhibit a particular form of single crossing

differences. We then introduce a new technique that extends Jia (2008) to functions that

satisfy a more general form of the the single crossing differences property. Finally, we present

an iterative application of our solution algorithm that allows to identify the maximizing

vector of any function with single crossing differences, extending the method in Jia (2008)

from a reduction to a solution method. Similar to Jia (2008) our technique exploits results

from lattice theory, however in contrast to Jia (2008) we employ a different version of Tarski

(1955) first introduced and proved by Knaster (1928) and only later generalized by Tarski

(1955).

A typical alternative to actually solving the combinatorial optimization problem is to use

a moment inequality approach to estimate the parameters of the return function and only

evaluate a few of the possible combinations to estimate bounds for the parameters. Pakes

et al. (2015), Holmes (2011) and Morales et al. (2015) are examples of this approach.4

Mirrlees (1971) introduced the importance of single crossing differences in mechanism

design, while Milgrom and Shannon (1994) clarified their role for monotone comparative

static analysis. In this line of research Kartik et al. (2016) presents the most contribution

extending some of the results in Milgrom and Shannon (1994) to decisions over lotteries.

3See also Carvalho and Voigtländer (2014) who demonstrate how the evolution of a network and in
particular the creation of new links within a network can be though of a as a discrete choice problem with
interrelated payoffs.

4A key drawback of moment inequality approaches is that they do not allow for counterfactual analysis
which requires the explicit solution of the model.
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To the best of our knowledge the role of single crossing differences in solving combinatorial

discrete choice problems has not been discussed by the literature.

Our paper also relates to a large literature on supermodular games discussed by Topkis

(1979), Vives (1990), Milgrom and Shannon (1994) and Zhou (1994). In particular we define

a class of n-market m-player aggregative games on a lattice and where the individual agent

solves a combinatorial discrete choice problem. Conditional on the functional form restriction

we impose these games are more general than supermodular games: they can have return

functions that are either supermodular or submodular in the own strategy while exhibiting

decreasing differences in the joint strategy space.5 To the best of our knowledge there is

no paper that has formally treated “submodular games”, i.e. games where, for example in

a typical Industrial Organizations setting, players are competing in an entry game across

several markets, while also facing internal negative spillovers between markets for example

due to cannibalization.6 Results by Voorneveld (2000) and Acemoglu and Jensen (2013)

guarantee the existence of pure strategy equilibria in such games and demonstrate how our

techniques to always locate such an equilibrium point.7

Lastly, our paper is related to a literature on Pseudo-Boolean optimization in Operations

Research detailed in Boros and Hammer (2002). This literature is occupied with maximizing

objectives of the form of equation (1) that map a Boolean domain into the space of real

numbers.. The only explicit discussion of the role of pseudo-Boolean problems in economics in

modeling interdependent discrete decisions is by Hammer and Shlifer (1971). In Operations

Research on the other hand the importance and prevalence of Pseudo Boolean objectives

in decision problems are much more established. A canonical problem is the Simple Plant

Location problem (SPLP) surveyed in Balinski (1964) or Owen and Daskin (1998). We

demonstrate how SPLP problems can be understood as submodular combinatorial discrete

choice problems that can be solved using our solution technique.

In the next section we introduce the general problem set up and introduce the necessary

and sufficient condition that guarantees the existence of an effective solution procedure.

In section 3 we state our main theorems pertaining to the maximization of combinatorial

discrete choice problems. Section 4 discusses a class of related games and demonstrates how

our maximization procedure can be used to solve for related pure strategy Nash equilibria.

Section 5 concludes.

5By joint strategy space we refer to the space mapped out by the collection of strategy vectors by all
players.

6Consider the situation of Walmart: distinct branches of the chain do compete with business when closely
located to one another (see eg. Holmes (2011)), while it also competes with other chains such as Kmart (see
eg. Jia (2008)).

7In particular, the supermodular multi-market entry game in Jia (2008) is a nested in our setup.

5



2 Combinatorial Discrete Choice Problems

In this section we introduce the class of discrete choice problems that are the subject of this

paper and which we term combinatorial discrete choice problems. We then discuss the key

restriction on the objective function in such problems that greatly simplifies the computation

of their solution. Lastly, we discuss the prevalence of combinatorial discrete choice problems

in the economics literature that naturally satisfy our key restriction.

2.1 Combinatorial Problems: General Setup

We consider the problem of maximizing a real valued function Π defined on a n-dimensional

Boolean domain Bn = {0, 1}n:8

Π : Bn → R

The objective is to find the maximizing vector I ∈ Bn, denoted I?, such that

I∗ = arg max
I∈Bn

Π (I) . (2)

This class of real-valued discrete choice problems over Boolean vectors has a variety of

applications in economics and other sciences. The particular challenge of these problems is

that individual decisions are typically not independent.9 It is this interdependence across

decisions that makes these problems combinatorial and inflates the number of potential

solutions to 2n. This dimensionality, in turn, makes the solution of these problems infeasible

to compute even on high powered computers.10

Unfortunately, a well known theorem in computational mathematics (see for example,

Wolpert and Macready (1997)), the so-called ‘no-free-lunch’ theorem states that without

further restriction on the properties of the pseudo-Boolean objective, Π, one cannot beat

random search algorithms in identifying I∗. Combinatorial discrete choice problems in eco-

nomics often naturally impose a restriction on the objective function that allows researchers

to improve upon random search. Such restriction and the associated solution method are

the subject of this paper.

8Functions of the form Π : Bn → R are known as pseudo-Boolean functions in mathematics. In particular
applications Π could be utility, profits, etc. A Boolean function is a function that maps a Boolean space into
Boolean space. Boolean functions are a subset of Pseudo Boolean functions since Bn ⊂ Rn .

9Intuitively, the cross derivative of Π(·) with respect to two different coordinates of the vector I is typically
not zero. The concept of a derivative of a pseudo-Boolean function is defined more rigorously below.

10The exponential growth of the potential solution space is known as the combinatorial explosion problem
in combinatorics. In addition many problems of this sort can be shown to be NP-hard, meaning they cannot
generally be proven to be solvable in less than polynomial time.
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2.2 Single Crossing Differences

Here we first introduce some further notational conventions. For any I, I ′ ∈ Bn, we say that

I ≥ I ′ if Ii ≥ I ′i for all i = 1, . . . ,n.11 Also denote by I i→1 the Boolean vector I with the ith

coordinate set to 1. We can then define the derivative of a function on the Boolean domain

with respect to the ith coordinate as follows: DiΠ(I) = Π(I i→1) − Π(I i→0). We will also

refer to this as the marginal value of the ith coordinate. With this notation in hand we can

introduce the key restriction we impose on the Boolean return function in what follows:

Definition. A function f : Bn → R exhibits:

1. Single Crossing Differences from below if, for any I, I ′ ∈ Bn such that I ≤ I ′ we

have

Di(f(I)) ≥ (>)0 =⇒ Di(f(I ′)) ≥ (>)0

2. Single Crossing Differences from above if, for any I, I ′ ∈ Bn such that I ≤ I ′ we

have

Di(f(I)) ≥ (>)0 ⇐= Di(f(I ′)) ≥ (>)0

3. Single Crossing Differences if it exhibits either Single Crossing Differences from

below or above.

We refer to a function that obeys the single cross differences property as a single crossing

differences function or an SCD function.

This restriction is intuitive: in case of the single crossing differences from below condition,

if the marginal value of a coordinate i is positive for a given I vector, it has to remain so even

as more entries of I are switched to 1. More concretely if Ii = 1 corresponds to opening a

production site in location i, this means that if profitable for a given set of open production

sites, this production site has to remain profitable even as more production sites are added

to the initial set. The intuition for the single crossing differences from above condition is

analogous.

On a continuous domain the single crossing difference condition corresponds to a restric-

tion on the cross derivatives of the return function with respect to coordinate i and all other

coordinates i′ 6= i of the I vector. Intuitively, in the single crossing differences from below

case if the derivative with respect to the ith coordinate is positive, the derivative of this with

respect to other entries i′ for which Ii′ = 0 , cannot be too negative. In particular it cannot

11The order relation “entry-wise comparison” establishes only a partial order on the n-dimensional Boolean
lattice. It can easily be shown that Bn along with “entry-wise comparison” is a particular sort of partially
ordered set known as lattice.

7



be so negative as to turn the derivative of Π with respect to i negative as successive other

coordinates are switched from Ii′ = 0 to Ii′ = 1.

It turns out that the single crossing differences condition is naturally satisfied by many

economic models and we list prominent examples below and in more detail in the appendix.

The assumption is also often easily verified in empirical applications: for example if a chain

store opens more and more stores over the years and rarely closes existing ones the single

crossing differences from below condition would seem to hold approximately for its underlying

profit function.

A sufficient condition for the single crossing differences condition to hold for the return

function Π is for it to exhibit either the supermodularity or submodularity property. In

what follows for any two elements I, I ′ ∈ Bn we denote by max (I, I ′) the vector with the ith

component max(Ii, I
′
i) and by min(I, I ′) the vector with the ith component min(Ii, I

′
i). We

refer to max (I, I ′) as the least upper bound and to min (I, I ′) as the greatest lower bound

of the pair (I, I ′) . We can then define:

Definition. A function f : Bn −→ R is supermodular if it satisfies for all I, I ′ ∈ Bn

f(max (I, I ′))− f(I) ≥ f(I ′)− f(min (I, I ′)),

A function f : Bn −→ R is submodular if it satisfies for all I, I ′ ∈ Bn ,

f(max (I, I ′))− f(I) ≤ f(I ′)− f(min (I, I ′)).

We find it useful to introduce this sufficient condition since the properties of super- and to

a lesser degree submodular return functions is already well-established in economics and their

relevant applications are numerous. The mathematical concepts of super- and submodularity

formalize the notion of positive and negative complementarities so prevalent in economics.

On a continuous domain these properties correspond to the cross-derivative of the return

function with respect to coordinate i and i′ being either positive or negative over the whole

domain.12

While the terms super- and submodularity have been employed in economics at least

since Topkis (1979), the benefit of these restrictions for combinatorial problems has not been

explicitly discussed in previous work in economics. However, for many of the return functions

in the literature this restriction turns out to hold, intentionally or as a side product of key

12While supermodularity and submodularity are sufficient and well-known in the economics literature,
there is another weaker sufficient condition that of quasi-supermodularity and quasi-submodularity. Super-
and submodularity have the most intuitive economic interpretation and so we choose to discuss them in more
detail.
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economic assumptions.13

Jia (2008) models the location decisions of a chain store and derives a return function

that is supermodular in the market entry decisions at individual locations. Holmes (2011)

models a similar chain store decision problem but assumes negative rather than positive com-

plementarities between different branches making his return function submodular. Arkolakis

et al. (2013) present a trade application where multinational producers choose optimal plant

locations across countries. The firm problem of this paper is to maximize a submodular

Pseudo-Boolean objective as we show in the appendix. Antras et al. (2014) study the inten-

sive and extensive margin of a firm’s global sourcing decisions and the resulting firm profit

function turns out to be either super- or submodular in the number of inputs used depending

on parametric restrictions. In the appendix we provide more details on the return functions

in these references.

2.3 Additional Restrictions in the Literature

We now present two additional restrictions on return functions in combinatorial discrete

choice problems. These additional restrictions often facilitate the efficient solution finding

for SCD return functions and can help to establish whether a given return function exhibits

this property.

2.3.1 Analytical Return Functions

An obvious restriction that is often imposed on combinatorial problems in economics is that

of an analytical return function. The return function in Jia (2008) constitutes a particularly

simple example. Since we will eventually compare our approach with the one of Jia (2008),

we here state the return function of the chain store in her paper:

Π (I) =
n∑
i=1

Ii ×

(
Xi + δ ×

n∑
i′ 6=i

Ii′

τii′

)
︸ ︷︷ ︸

πi(I)

(3)

Here i corresponds to a particular potential store location. Ii takes the value 1 if a store is

open in location i and 0 if not. In other words Ii is a Boolean variable. Xi is the part of the

payoff from opening a store in location i that is independent of other stores, which can be

negative or positive. The term δ×
∑
Ii′/τii′ in the return function parameterizes a spillover

between different chain store locations, with τii′ being the distance in miles between store

13This is not surprising in a way given how central the ideas of complementarities, positive and negative,
are in economics.
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location i and i′.14 Jia (2008) imposes δ > 0 to model positive spillovers between branches,

as a result (3) exhibits supermodularity.

Besides an intuitive interpretation analytical return functions have two major advan-

tages. First, the super- or submodularity is often directly linked to a parameter in the profit

function, eg. in (3) the sign of δ determines the direction of complementarities.15 This

allows for easy verification of the SCD property of the objective of the problem and hence

the applicability of the methods we propose. It also means estimation of the direction of

complementarities translates directly into this parameter. One of the advantages of our

method is that it can deal in an analogous fashion with both directions of spillovers, which

means it can be conveniently nested in an estimation routine that searches over a negative

and positive support for δ to minimize a loss function. The second advantage of analytical

return functions is a computational one; they often allow for analytical computation of the

marginal value of an index i, which as we will demonstrate halves the computational time of

the solution method.16 Arkolakis et al. (2013) and Antras et al. (2014) are other examples

from the literature that feature analytical return functions.

2.3.2 Additively Separable Return Function

Another common restriction on return functions, Π, is their separability into decision-specific

return functions πi(I). These are cases in which we can rewrite (2) as follows:

Π (I) =
n∑
i=1

πi (I) (4)

In this case we do not restrict the functional form of the individual decision payoff function

πi (I) as a function of the strategy vector I. However, the way individual decision payoffs

are aggregated into the overall return of the agent Π (I) is additive.

The following lemma derived directly from Costinot (2009) shows that it is enough to

check for super- or submodularity in the individual return functions to guarantee that the

overall return function has the respective property.

Lemma 1. If two pseudo-Boolean functions f, g : Bn −→ R are supermodular then f + g is

supermodular. This additivity property also holds for submodular functions.

Proof. See Appendix.

14Note that it is this spillover term that induces the curse of dimensionality: if there was no interaction
between locations the chain store could consider all N locations separately.

15δ < 0 would make the return function in Jia (2008) exhibit submodularity.
16The method involves the computation of DiΠ(I) = Π(Ii→1) − Π(Ii→0) for all coordinates i at each

iteration which involves two evaluations of the profit. An analytical expression for Π implies an analytical
expression for DiΠ(I) which halves the number of functions to be evaluated at each iteration.
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The proof of this lemma follows directly from definition 2.2 and is formally stated in

the appendix. Using this lemma facilitates proving that the return function Π exhibits the

super- or submodularity property and exhibits SCD.

An array of papers feature such separable combinatorial discrete choice problems. Holmes

(2011) and Jia (2008) both feature overall profit function of the chain store that takes the form

4 where I is the choice of branch locations and πi (I) is the profit of the branch in location

i. Arkolakis et al. (2013) and Tintelnot (2016) are examples from the trade literature.

The canonical Simple Plant Location Problems (SPLP) that have been studied in oper-

ation research, engineering and economics also feature separable return functions (see, for

example, Balinski (1964); Manne (1964) who first formulated the problem, or Verter (2011)

for a recent survey on this and related facility location problems). In these problems, given

a set n of potential plant locations and a finite set of demand points a chain store needs to

choose the optimal distribution of stores across localities. For any location i = 1, . . . , n there

are fixed costs of opening a production facility and a variable cost of serving a client in an-

other location. While the typical SPLP problem is formulated as a minimization problem it

can be rewritten as a pseudo-Boolean maximization problem whose objective function takes

the form of 4 (see Appendix). Using lemma 1 helps to establish the submodularity of this

class of problems.

3 Theory

We proceed with developing the main results of our theory. We start by defining some

additional concepts in the first subsection, state our main results in the second one and

finally compare our technique to existing ones.

3.1 Definitions and Notation

In order to state our core results we need to define some key terms from the mathematical

branch of lattice theory. Lattice theory is an outgrowth of the field of Boolean algebra,

and provides a framework for unifying the study of ordered sets in mathematics. Canonical

references are Grätzer (2002) and Birkhoff et al. (1948).

Let X be a partially ordered set along with an order relation ≥ that is reflexive, antisym-

metric and transitive.17 The partially ordered set X is called a lattice if it contains the least

upper bound and the greatest lower bound of each pair of its elements. If T is a subset of

17Note that in the following definition an order relation is called to be reflexive if x ≥ x for all x ∈ X, and
antisymmetric if x ≥ y and x ≤ y implies that x = y.
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a lattice X and T contains the least upper and greatest lower bound (with respect to X) of

each pair of elements of T, then T is a sublattice of X. A lattice X is complete when every

nonempty subset of it has a least upper bound and a greatest lower bound contained in X.

An important result is that the set of all permutations of the n-dimensional Boolean

vector I ∈ Bn along with coordinate-wise comparison as order relation forms a complete

lattice. We denote this lattice by I throughout the rest of the paper. We state all our results

for this particular lattice, although they hold for more general lattices. Also we denote the

set of all complete sublattices of the lattice I by S (I) and order these sublattices by set

inclusion, denote ⊆.18

Example 1. The two dimensional Boolean lattice is the following partially ordered set along

with “coordinate-wise” comparison as an order relation:

I = {(1, 1), (1, 0), (0, 1), (0, 0)}

The set is only partially ordered since under “coordinate-wise” comparison not all elements

can be ranked, eg. (0, 1) and (1, 0) cannot be compared. The following lattices I′, I′′ ∈ S (I)

are examples of sublattices of I:

I′ = {(1, 1), (1, 0)} I′′ = {(0, 1), (0, 0)}

Using the “set-inclusion” order relation we see that I′ ⊆ I while we cannot order I′ and I′′,

showing the sense in which the set of sublattices of I, S (I), is again a partially ordered set.

Further it can be shown that S (I) forms a complete lattice in itself.

We can now formulate the algorithm we propose as a recursive mapping which we dub

as AE : S (I)→ S (I). AE maps the set of complete sublattices of I into itself. We say that

AE is set increasing if AE(I) ⊆ AE(I′) whenever S(I) ⊆ S(I′).

Definition. Consider a complete lattice I0 and form:

Ω̄1(I
0) = {i : Di(Π(sup I0)) < 0} and Ω1(I

0) = {i : Di(Π(inf I0)) ≥ 0}

Then, we define the mapping AE1 : S(I0)→ S(I0) as

AE1(I
0) = {I ∈ I0 : Ii = 0 and Ij = 1, ∀i ∈ Ω̄1(I

0), ∀j ∈ Ω1(I
0)}.

Similarly, form the following:

18Note that the set of sublattices of I along with the “set-inclusion“ order relation forms a complete lattice
in itself.
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Ω̄2(I
0) = {i : Di(Π(sup I0)) > 0} and Ω2(I

0) = {i : Di(Π(inf I0)) ≤ 0}

Then, we define the mapping AE2 : S(I0)→ S(I0) as

AE2(I
0) = {I ∈ I0 : Ii = 1 and Ij = 0, ∀i ∈ Ω̄2(I

0), ∀j ∈ Ω2(I
0)}.

Iterating on the first mapping will help maximize objective functions that exhibit SCD,

while iterating on the second will have the analogous effect for objectives exhibiting SCD.

Note that applying these mappings to a given lattice I corresponds to removing certain

vectors from this set. Denote the lattice with the respective vectors removed after the kth

iteration by Ik, ie. Ik ≡ AEi(I
k−1) for i = 1, 2.19 Note that each Ik along with the coordinate-

wise comparison order relation forms again a complete lattice. We define the complete lattice

Ik such that Ik = AEi(I
k) as I?.

3.2 Main Results

Our first main result is that iterating the mappings defined above on a Boolean lattice will

converge to a complete lattice that contains the maximizing vector I? = argmaxI∈BnΠ(I)

under the sole condition that Π exhibits the SCD property.

Theorem 1. Consider a function Π : Bn −→ R.

(i) If Π exhibits single crossing differences from below, the AE1 : S(I) → S(I) mapping

has a fixed point I? that is a complete lattice, with I? ∈ I?.

(ii) If Π exhibits single crossing differences from above, the AE2 : S(I)→ S(I) mapping

has a fixed point I? that is a complete lattice, with I? ∈ I?.

(iii) If Π exhibits SCD from below or above, iterating on AE1 or AE2 identifies I? in a

maximum of n iterations.

Proof. See Appendix.

SCD ensures that the AE1 mapping is set increasing on the set of sublattices of I, S(I).

This allows the application of the Knaster-Tarski fixed point theorem which guarantees the

existence of a set of fixed points that form a complete lattice. We then show that AE1 never

eliminates I? by construction, and that iterating on AE1 always converges to the fixed point

I?. It follows that I? ∈ I?. Likewise the single crossing differences from above condition

makes AE2 set-increasing on the set of sublattices of I. We illustrate the basic workings of

the AE1 mapping in the following example.

19Note that Ik is a complete sublattices of I for any k.
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Example 2. Let I0 = {(0, 0), (0, 1), (1, 0), (1, 1)}. Suppose the function Π takes the following

values on I0:

Π (0, 0) = 0 Π (0, 1) = 9 Π (1, 0) = −2 Π (1, 1) = 11

We can then easily verify that Π exhibits single crossing differences from below in this

example. Indeed we can make the even stronger statement of Π being supermodular on I0.

Also note that:

sup I0 = (1, 1) inf I0 = (0, 0)

Since Π is supermodular we can apply the AE algorithm. Applying AE1 to I0 we obtain:

D1

(
Π
(
sup I0

))
= 2 > 0 D2

(
Π
(
sup I0

))
= 13 > 0

D1

(
Π
(
inf I0

))
= −2 < 0 D2

(
Π
(
inf I0

))
= 9 > 0

But then AE1

(
I0
)

= I1 where

I1 = {(0, 1), (1, 1)}

which is a complete lattice again. The application of the algorithm has effectively fixed the

second entry to 1. Applying AE1 again, now to I1 we obtain

D1

(
Π
(
sup I1

))
= 2 > 0 D1

(
Π
(
inf I1

))
= 2 > 0

But then AE1

(
I1
)

= I2 where

I2 = {(1, 1)}

In this case we can find the set of fixed points of AE1 in two steps. Further the fixed point

set is a singleton. It follows that I? = (1, 1).

Theorem 1 is an important first step towards identifying I∗. However, at times I? may

not be a singleton and in the worst case still contain 2n elements. In these instances further

work needs to be done to identify I? . For this purpose we develop an extension of the

algorithm, which applies AE repeatedly (and which we dub AE − R(epeated) or simply

AER) and which always delivers the maximizing vector I∗. We define the AER procedure

as follows:

14



Definition. Consider a function Π : Bn −→ R on a non-singleton complete lattice I that

exhibits the single crossing differences from below property:

(i) Iterate on AE1 until convergence. If | I? |= 1, I? = I?, else continue.

(ii) Pick any sublattices I1, I2 of I , st. I = I1 ∪ I2 and ∅ = I1 ∩ I2.

(iii) Iterate AE1 on I1, I2 separately resulting in fixed points I?1 and I?2.

(iv) If | I?1 |=| I?2 |= 1 then I? = arg maxI∈I?1∪I?2 Π(I).

(v) Else pick sublattices Ii,1, Ii,2 of I?i st. Ii = Ii,1 ∪ Ii,2 and ∅ = Ii,1 ∩ Ii,2 for i = 1, 2 and

repeat.

AER is defined analogously for objectives that exhibit single crossing differences from

above.

AER is effectively splitting the lattice at one dimension at a time and then applies the

AE algorithm to the two resulting sublattices. We can prove the following theorem on the

properties of the AER algorithm:

Theorem 2. If Π exhibits SCD property, then AER always converges to I∗.

Proof. See Appendix.

Note that in the worst case AER collapses to the brute force approach. In terms of

computational time the benefits of applying AER rather than brute force can be enormous,

since AER can be thought of as yielding to brute force one coordinate at a time: whenever

AE cannot make progress the remaining lattice is split, implying we will need to manually

compare the outcomes from running AE on the two resulting sublattices. If AE does not

fix entries then this results in splitting an n dimensional lattices n times and comparing

manually at each break point: this corresponds to the brute force approach. In practice

applying AER outperformed brute force vastly in all applications.

Finally we provide a lower bound on the time complexity of the AE technique:

Proposition 1. Consider a function Π : Bn −→ R:

(i) If Π exhibits SCD then AE1 converges to I? in O (n2) time.

(ii) If Π exhibits SCD then AE2 converges to I? in O (n2) time.

Proof. See Appendix.

The AER algorithm can be coded up as a simple recursive routine. Matlab codes of the

AER method that interface with arbitrary profit functions of the form Π : Bn −→ R are

available from the authors website.
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3.3 Relation with Jia (2008)

In order to solve the problem of maximizing the chain store return function (3), Jia (2008)

develops a method to reduce the dimensionality of the problem. In this section we show how

our approach nests and extends the technique outlined in Jia (2008).

Jia (2008) defines the following recursive mapping V : Bn → Bn:

Vi(I) := Ii × [Di(Π(I)) ≥ 0] (5)

where 1 is an indicator function that is 1 if the argument is true. The particular contribution

of Jia (2008) is that by using Theorem 1 in Tarski (1955) she shows that if V is increasing

on the lattice I (5) iterative mapping converges to a fixed point I ∈ Bn. Her method then

consists of iterating on V , first starting with the vector of all 1s and then with the vector

of all 0s. This way she can identify the upper and lower bound of the set of fixed points

of V . These bounds and the set of vectors in-between them form a complete lattice I? that

contains I?. Jia (2008) then evaluates Π for all I ∈ I? to identify I?.

It turns out that SCD of Π is crucial for the characterization of the properties of the

mapping V . In particular, we can prove the following lemma:

Lemma 2. V is increasing if and only if Π exhibits the single crossing differences from below

property.

Proof. See Appendix

This lemma highlights that the applicability of the Jia (2008) technique is limited to

return functions that exhibit the single crossing differences from below property. For such

return function we can prove the following lemma:

Lemma 3. If Π exhibits the single crossing differences from below property, the set of fixed

points of V coincides with the fixed point of AE1.

Proof. See Appendix.

Note that V is defined on the Boolean lattice, that is it takes in individual vectors and

hence its fixed points are vectors. AE1 however is defined on the set of sublattices of the

Boolean lattice and operates on lattices so its fixed point is a lattice. Lemma (3) establishes

that the unique fixed point of AE1 which is a Boolean lattice is the same Boolean lattice

formed by the set of fixed point vectors of the V mapping. This highlights the second

limitation of the Jia (2008) technique: while it can reduce the set of potential solutions in

many instances there is no guarantee that the resulting set of fixed points is a singleton. In
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this sense the AER technique will become useful even for maximizing objectives whose set

of potential solutions could previously be reduced using the Jia (2008) method. In addition

the AE mappings are saving on computational time, since it is not necessary to recompute

marginal values for coordinates that have been fixed to 0 or 1.

Jia (2008) also discusses the use of her algorithm in helping to identify the pure strategy

Nash equilibria of a supermodular game on a lattice. In the next section we generalize these

results to games that exhibit the SCD.

4 Games on a Lattice

The concept of supermodularity has gained much of its prominence in economics through

its role in the theory of supermodular games. The seminal contributions to this literature

are Topkis (1978) and Milgrom and Shannon (1994) who provided necessary and sufficient

conditions for the solution set of a maximization problem to be monotonic in the parameters

of the problem. Also Topkis (1979) and Zhou (1994) proved that a two player game with

payoff functions that are supermodular in the own strategy space and have decreasing dif-

ferences in the joint strategy space of the players always has a non-empty set of equilibrium

points that form a complete lattice.

To our knowledge there has been no formal treatment of “submodular games”, that is

games in which the payoff function of one player is subdmodular in her own strategies and

retains decreasing differences in the joint strategy space of the players. Jia (2008) studies

a classic supermodular game in which two chain stores compete across a set of locations

with their only choice being whether to enter a given market or not, while there are positive

complementarities within each firm. A natural question to ask is then what if, as for example

in the Holmes (2011) paper, there is a negative spillover effect within firms. Incorporating

this feature into a market entry game across locations would lead to what we here term a

“submodular game”, that is a game where the profit function of an agent is submodular in

his own strategy and decreasing in the joint strategy space.

We will here provide an existence proof for pure strategy Nash equilibria in N player

games on a lattice, where interactions are aggregative and players’ profit functions are un-

restricted own actions. Note that this nests a class of super- and submodular games on a

lattice for example the game considered in Jia (2008). The AER algorithm can be used to

locate a Pure Strategy Nash equilibrium in such games as long as the profit function exhibits

SCD in a player’s own action.

A theory of submodular games is not possible with the same generality and elegance

achieved by Topkis (1979), Milgrom and Shannon (1994) and Zhou (1994) and so in this
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paper we restrain ourselves to a restricted class of such games.

4.1 Setup

Consider an m player n market entry game defined on the joint Boolean strategy space

Bn × . . . × Bn. We write player is profit function as a function of her and her opponents’

strategy vectors as follows:

Πi(I
1, . . . , I i, . . . , Im) = fi(I

i) + g(I1, . . . , I i, . . . , Im) (6)

where fi is any function on Bn and allowed to differ across players and g is any function on

m tuples of a state space I. Note the generality of this formulation: the sole restriction on

player i’s profit function is that it is additively separable into a player i specific part that is

only a function of player i’s actions, fi, and a part that is common across players and allowed

to be a function of all players’ actions, g. This is a special case of the class of best-response

potential games introduced in Voorneveld (2000) .

In particular then fi : Bn → R could be a function that exhibits SCD , or as a special case

thereof super- or submodularity. In the next section we first present the result regarding the

existence of pure strategy Nash equilibria for the above class of games which is a corollary of

results from Voorneveld (2000). Secondly we prove that AER can always be used to identify

a pure strategy Nash equilibrium in such games as long as players’ profit functions Πi exhibit

SCD.

4.2 Using AER to Locate Equilibrium Points

The following theorem states the condition for the existence of a pure strategy equilibrium

in games of the form in equation (6) and gives the conditions necessary for AER to be useful

for locating such equilibrium points, if they exist.

Theorem 3. Consider the n−player m−market game in equation (6). In such games

(i) The set of pure strategy Nash equilibria is non-empty.

(ii) If Πi exhibits SCD for all i, iteratively applying AER for all players eventually

terminates in a pure strategy Nash equilibrium.

Proof. See Appendix.

Part (i) is a corollary of results in Voorneveld (2000). The proof is based on showing that

there exist no best response cycles. One can start with any player i and solve her problem

holding the actions of all other players fixed, then fix i’s strategy and move on to the next
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player solving her problem holding the actions of all players including i fixed. Voorneveld

(2000) proved that in games of the form above such a procedure exhibits no cycles and hence,

since there is a finite amount of paths through any players’ finite action space, there must be

at least one pure strategy Nash equilibrium. AER can solve the individual player’s problem

at each point in this process if the Πi exhibits SCD and hence will always identify a Nash

equilibrium in such games.

4.3 Special Cases

In this section we show some special cases of the general formulation of SCD games in

equation (6). In the first subsection we demonstrate how it nests the game in Jia (2008),

while in the second we outline a two-player version which makes the game non-aggregative.

4.3.1 Quadratic Games

We note that a special case of the class of games defined above are quadratic super- or

submodular games of the following form, where the sign of δi,j determines the direction of

complementarities, while the sign of cj determines whether Πi is increasing or decreasing in

the joint strategy space.

Πi(I
1, . . . , I i, . . . , Im) =

n∑
j=1

(
µjI

i
j +
∑
k 6=j

δi,jI
i
jI
i
k −

∑
l 6=i

cjI
i
jI
l
j

)

In the case with just two players, δi,j and cj restricted to be positive, this is the game

considered in Jia (2008).

4.3.2 Two player Games

In the two player games we can write the game in the following general form:

Π1(I
1, I2) = f1(I

1) + g(I1, I2)

Π2(I
1, I2) = f2(I

2) + g(I1, I2)

In this special case the aggregate of all players’ actions g(I1, I2) is just a function of the

opponent and hence the game is now more general than aggregative games.
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5 Conclusion

This paper introduces a class of combinatorial discrete choice problems along with a method

to solve them. We introduced intuitive and easy to implement procedures that can be used

to simplify and solve optimization problems in the class of combinatorial discrete choice

problems characterized by SCD. Further we described a class of multiplayer games on mul-

tidimensional Boolean lattices in which the existence of a pure strategy Nash equilibrium is

guaranteed and an equilibrium point can always be computed.
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A Appendix

The authors want to thank Jake DiCicco, Andrew Salmon, Benjamin Tong, and Yunus

Tuncbilek for their outstanding help with this Appendix.

A.1 Proofs of Results

Proof of Lemma 1

Lemma. If two pseudo-Boolean functions f, g : Bn −→ R are supermodular then f + g is

supermodular. This additivity property also holds for submodular functions.

Proof. From the definition of supermodularity of a Pseudo-Boolean function we know that

for f and g the following holds:

f(max(x, y))− f(x) ≥ f(y)− f(min(x, y))

g(max(x, y))− g(x) ≥ g(y)− g(min(x, y))

But this then implies for f + g:

[f(max(x, y))− f(x)] + [g(max(x, y))− g(x)] ≥ [f(y)− f(min(x, y))] + [g(y)− g(min(x, y))]

[g + f ](max(x, y))− [g + f ](x) ≥ [g + f ](y)− [g + f ](min(x, y))

Therefore g+ f is also supermodular. The proof for the submodular case works analogously.

Proof of Theorem 1

Theorem. Consider a function Π : Bn −→ R.

(i) If Π exhibits single crossing differences from below, the AE1 : S(I) → S(I) mapping

has a fixed point I? that is a complete lattice, with I? ∈ I?.

(ii) If Π exhibits single crossing differences from above, the AE2 : S(I)→ S(I) mapping

has a fixed point I? that is a complete lattice, with I? ∈ I?.

(iii) If Π exhibits SCD iterating on AE1 or AE2 identifies I? in a maximum of n iterations.
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To proof this theorem we proceed in several steps. First define the following mapping

V : Bn → Bn such that

Vi(I) := 1[Di(Π(I)) ≥ 0]

In a first step we prove that this mapping is increasing if and only if Π exhibits single crossing

differences from below and decreasing if Π exhibits single crossing differences from above.

Lemma. V is increasing (decreasing) if and only if the single crossing differences from below

( from above) condition holds for Π.

Proof. First, suppose that V is increasing. Consider any 1 ≤ i ≤ n. Then, consider any

two vectors I, I ′ s.t. I ′ ≤ I. If Di(Π(I ′)) ≥ 0, then Vi(I
′) = 1, and since V is increasing,

Vi(I) = 1, which implies that Di(Π(I)) ≥ 0. Since this holds for any two vectors and for any

i, we must have that the single crossing differences from below condition holds.

Next, suppose that the single crossing difference from below condition holds. Consider any

1 ≤ i ≤ n. Then, consider any two vectors I, I ′ s.t. I ′ ≤ I. If Vi(I
′) = 1, then Di(Π(I ′)) ≥ 0,

so by the single crossing difference condition from above, Di(Π(I)) ≥ 0, so Vi(I) = 1. Oth-

erwise, if Vi(I
′) = 0, then Vi(I) ≥ Vi(I

′) since V can only take on the values 0 or 1. Since

this holds for any two vectors and for any i, we must have that V is increasing.

An analogous proof holds for the decreasing case.

Next we show that AE1 is set increasing if and only if V is increasing and AE2 is set

increasing if and only if V is decreasing.

Lemma. AE1 is set-increasing if and only if V is increasing. AE2 is set-increasing if and

only if V is decreasing.

Proof. Suppose first that V is increasing. Consider any two lattices I, I′ ⊆ Bn such that

I′ ⊆ I. We want to show that AE1(I
′) ⊆ AE1(I). Since I′ ⊆ I, we know that

inf I ≤ inf I′

sup I ≥ sup I′.

Then, since V is increasing, we also have that for all 1 ≤ i ≤ n,

Di(Π(inf I)) ≤ Di(Π(inf I′))

Di(Π(sup I)) ≥ Di(Π(sup I′)).
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Now suppose index j was set to 1 in AE1(I). Therefore by the definition of AE1, we know

that we must have Dj(Π(inf I)) ≥ 0. But since Di(Π(inf I)) ≤ Di(Π(inf I′) for all i, we also

have Dj(Π(inf I′)) ≥ 0, which means that index j is set to 1 in AE1(I
′) as well. Similarly, if

index j was set to 0 in AE1(I), by the same reasoning with sup instead, we know that index

j was set to 0 in AE1(I
′). Therefore, AE1(I

′) has at least as many set indices as AE1(I),

which means that AE1(I
′) ⊆ AE1(I), thereby showing that AE1 is set-increasing. If V is

decreasing, the proof for AE2 is analogous.

Now suppose that AE1 is set-increasing. Assume by contradiction that V is not increas-

ing. Consider two vectors I ′, I ′′ ∈ Bn such that I ′i = 0, I ′′i = 1 for some i, I ′j = I ′′j for all

j 6= i. Then there must exist an index k such that Vk(I
′) = 1 while Vk(I

′′) = 0 since else V

would be increasing. This implies that Dk(Π(I ′)) ≥ 0 and Dk(Π(I ′′)) < 0. Note that k 6= i,

since otherwise the two derivatives would necessarily be equal.

Let I′′ = {I : I ≤ I ′′} and I′ = {I : I ≤ I ′}, so I′ ⊆ I′′. Since AE1 is set-increasing,

AE1(I
′) ⊆ AE1(I

′′). Since Dk(Π(sup I′′)) = Dk(Π(I ′′)) < 0, AE1(I
′′) must have index k set

to 0, which means that AE1(I
′) must have index k set to 0 as well since AE1 set-increasing

implies AE1(I
′) ⊆ AE1(I

′′).

Let K′′ = {I : I ≥ I ′′} and K′ = {I : I ≥ I ′}, so K′′ ⊆ K′. Since Dk(Π(inf K′)) =

Dk(Π(I ′)) ≥ 0, AE1(K
′) must have index k set to 1, which means that AE1(K

′′) must have

index k set to 1 as well since AE1 set-increasing implies AE1(K
′′) ⊆ AE1(K

′).

If I ′k = I ′′k = 0, then K′ must contain at least 1 vector with index k set to 0. In order

for AE1(K
′′) to only have vectors with index k set to 1, we must have that Dk(Π(inf K′′)) =

Dk(Π(I ′′)) ≥ 0, which is a contradiction.

Therefore, we need that I ′k = I ′′k = 1. Then, I′ must contain at least 1 vector with in-

dex k set to 1. In order for AE1(I
′) to only have vectors with index k set to 0, we must have

that Dk(Π(sup I′)) = Dk(Π(I ′)) < 0. But this is also a contradiction.

Therefore by contradiction V must be increasing. Similarly, it can be shown that AE2

set-increasing implies that V is decreasing.

Together then the last two lemmas imply that AE1 is set increasing if and only if Π

exhibits single crossing differences from below and that AE2 is set increasing if and only if

Π exhibits single crossing differences from above.
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Theorem. If AE1 is set increasing, then it converges to a complete lattice that includes I?.

If AE2 is set increasing, then it converges to a complete lattice that includes I? .

Proof. Consider the AE1 mapping. By construction if I? ∈ I, then I? ∈ AE1(I). Also note

since AE1 is set increasing and S(I), the set of all sublattices of I, forms a complete lattice

we can invoke the Knaster Tarski theorem to guarantee that AE1 has a non-empty set of

fixed points on S(I) that forms a complete lattice. Call that set of fixed point S(I?), so that

AE1(I
′) = I′ for all I′ ⊆ S(I?). But then I? ∈ I?, where I? is the largest fixed point of AE1.

Therefore, the proof is complete.

To see why (iii) in Theorem 1 holds is immediate. Note that the AE mappings fix at

least one entry each iteration, since else a fixed point is reached. Since all vectors in I have

n entries, both AE mappings always converge in a maximum of n steps. This completes the

proof.

Proof of Theorem 2

From the proof of theorem 1 we know that AE1 is set-increasing if and only if Π exhibits the

single crossing differences from below property. We also know that AE2 is set-increasing if

and only if Π exhibits the single crossing differences from above property. But then to prove

the statement of theorem 2 all we need to prove is that if AE1 or AE2 are set increasing then

AER always identifies I?.

Theorem. If AE1 is set increasing then AER always identifies I∗. If AE2 is set increasing

then AER always identifies I∗.

Proof. Consider an objective function Π that exhibits single crossing differences from below.

We use induction on n, the dimension of the lattice. For the base case, if n = 1, then it is

trivial in determining I∗, as there are only two options to choose from, either I = 1 or I = 0.

Applying AE1, if D1Π(I) > 0 I? = 1, else I? = 0.

Now suppose that AER always identifies I∗ given some I ∈ Bk. We want to show that

AER always identifies I∗ given some I of dimension k + 1. Given I ∈ Bk+1, we try to run

AE1. We have two cases.

The first case is that AE1 fixes some a indices, where a > 0. Then, AE1(I) ⊂ I is a

proper subset of I, I1 = AE1(I). We can consider I1 to be of dimension k + 1 − a, as a

dimensions are fixed. By construction, I∗ is included in AE1(I). Therefore, by the inductive

hypothesis, AER will identify I∗ from AE1(I).
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The second case is that AE fixes no indices. In this case, we form two sublattices of I,

Ii→1 and Ii→0. Since we fixed one index in both these new sublattices, Ii→1 and Ii→0 can be

considered of dimension k. Furthermore, I∗ ∈ Ii→1 or I∗ ∈ Ii→0, since the I is the disjoint

union of these two sublattices. Let I?i→1 be the vector returned from applying AER to the

lattice Ii→1 and I?i→0 be the vector returned from applying AER to the lattice Ii→0. By

the inductive hypothesis, these two vectors are the optimal vectors for their corresponding

lattices. Then, by AER on I, we return the vector among these two that product the optimal

profit. But since I∗ is in one of these sublattices, we must have that I∗ is equal to I?i→1 or

I?i→0. Thus, in this case, AER also identifies I∗.

Therefore, the inductive step is proven, and we have shown that AER always identifies

I∗ for any fixed dimension n ≥ 1. The proof for an objective function that exhibits single

crossing differences from below works analogously.

Proof of Proposition 1

Proposition. Consider a function Π : Bn −→ R:

(i) If Π exhibits the single crossing differences from below property then AE1 converges

to I? in O (n2) time.

(ii) If Π exhibits the single crossing differences from above property then AE2 converges

to I? in O (n2) time.

Proof. Similar to the logic for the proof of part (iii) in Theorem 1. AE1 takes a maximum

of n iterations to converge to its fixed point by Theorem 1.(iii). At each iteration there are

a maximum of 2× n+ 2 functions to evaluate to compute all derivatives. It follows that the

algorithm has a time complexity of O(n2).

Proof of Lemma 2

Lemma. V is increasing if and only if Π exhibits the single crossing differences from below

property.

Proof. Lemma 2 is the first lemma in the proof of theorem 1.

Proof of Lemma 3

Lemma. If Π exhibits the single crossing differences from below property, the set of fixed

points of V coincides with the fixed point of AE1.
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Proof. Consider the set of fixed points of V and denote it A ⊆ Bn. Also consider the lattice

that forms the fixed point of AE1 and denote it I? ⊆ Bn.

Firstly suppose there exists a vector I ∈ A such that I 6∈ I?. Since I ∈ A we know that

DiΠ(I) ≥ 0 ∀i Ii = 1 and DiΠ(I) < 0 ∀i Ii = 0. Now note that I = sup{I} = inf{I}. But

then DiΠ(inf I) ≥ 0 ∀i Ii = 1 and DiΠ(sup I) < 0 ∀i Ii = 0. Applying AE1 to I would result

in I, ie. {I} = AE1({I}). Hence AE1 would never eliminate I and so I is part of the lattice

that forms the fixed point of AE1. So I ∈ I? and hence we have a contradiction. So if I ∈ A
then I ∈ I?.

Secondly suppose there exists a vector I ∈ I? such that I 6∈ A. Now note that I =

sup{I} = inf{I}. Since I ∈ I? we know DiΠ(inf I) ≥ 0 ∀i Ii = 1 and DiΠ(sup I) < 0 ∀i Ii =

0. But then I ∈ A and hence we have a contradiction. So if I ∈ I? then I ∈ A. Hence

I? ⊆ A and A ⊆ I? so A = I? and the proof is complete.

Proof of Theorem 3

Theorem. Consider the n−player m−market game above with Πi(.) exhibiting the SCD for

all i. In such games

(i) The set of pure strategy Nash equilibria is non-empty.

(ii) Iteratively applying AER for all players eventually terminates in a pure strategy Nash

equilibrium.

Proof. For part (i) simply note that P (I1, . . . , Ii, . . . , In) = g(I1, . . . , Ii, . . . , In) +
∑n

i=1 fi(Ii)

is a potential function in the sense that the vectors in I maximizing the profit function Πi

for player i also maximize the potential function P with the actions of all other players j 6= i

fixed. The result follows by a result from Voorneveld (2000). The existence of the so called

potential function P makes the game above a best response potential game in the sense of

Voorneveld (2000).

For (ii) simply note that by Voorneveld (2000) Theorem 3.2 a best response potential

game exhibits no best response cycles. Also note that since Πi exhibits SCD we know that

AER can identify I? = arg max Πi for all Ij j 6= i fixed. But then starting from player i = 1

we can solve for I? = arg max Πi by taking the strategies of all other players as given at their

current I?. Since there are no best response cycles and strategy sets are finite this procedure

will always terminate in a pure strategy Nash equilibrium. This completes the proof.
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A.2 Examples of Pseudo-Boolean Return Functions in Literature

A.2.1 Jia (2008)

In Jia (2008) a chain store chooses an optimal set of store locations across the United States.

There is a large number n of potential store locations from which it has to select a subset so

as to maximize its overall profits. Jia (2008) postulates positive spillovers between different

branches as a result of scale economies. In particular, the overall profit function in Jia (2008)

can be written:

Π (I) =
n∑
i=1

Ii ×

(
Xi + δ ×

n∑
i′ 6=i

Ii′

τii′

)
(7)

Here i corresponds to a particular potential store location. Xi is the part of the payoff from

opening a store in location i that is independent of other branches. The term δ
∑
Ii′/τii′

parameterizes the positive spillover between different branches, with τii′ being the distance in

miles between store location i and i′. Jia (2008) proves in Appendix B4 of her paper that the

function (7) is supermodular on the Boolean Lattice space. Hence the AER algorithm can

be applied to the problem. The method Jia (2008) uses to reduce the problem corresponds

to a single application of the AE algorithm.

A.2.2 Arkolakis et al. (2013)

Arkolakis et al. (2013) build a model of trade and multi-national production. Firms can

locate production sites outside their home market and use these locations to serve both the

home market and/or other international markets. The problem of an individual firm at home

in country k is to choose a vector I ∈ Bn where n is the number of countries and where

Ii = 1 corresponds to the decision to build a plant in location i at fixed cost fi. Conditional

on a given plant location vector I we can then calculate the optimal quantities that a given

plant in i is supplying to all n possible markets. Denote by πi (I) the net profit plant i makes

from selling to all locations for which it is the lowest cost supplier given the current plant

strategy I. If we denote the profit of plant i from serving market l by πil for which it is the

lowest cost supplier we have πi (I) =
∑

l πil. We denote by J(I) a matrix with Jil = 1 if

location i is the cheapest cost supplier to location l (among all locations of the firm around

the world for which Ii = 1). The profit function of a firm then can be written as

Π (I) =
n∑
i=1

1[Ii = 1](
n∑
l=1

1 [Jil (I) = 1] πil − wifi) (8)
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where

πkl =

{
1
σ

(
σ
σ−1

)1−σ
(Cikl)

1−σXlP
σ−1
l − flwl if Jkl = 1

0 if Jkl = 0

σ is the elasticity of substitution between varieties, Ckil is the unit cost of a firm from k

producing in location i to serve market l. There is a fixed cost of entering market l which is

paid in country l wages and XlP
1−σ
l is a measure of local demand in destination l. Suppose

plant i makes a profit of πi (I) initially and then other plants are opened up. Plant i’s

profit will weakly decrease in the presence of the additional plants since it may cease to be

the cheapest supplier for some destinations. Hence the function (8) is submodular on the

Boolean lattice and AER can be applied to identify I?.

A.2.3 Holmes (2011)

In Holmes (2011) a chain store chooses in which locations across the United States to open an

outlet. In contrast to Jia (2008), Holmes (2011) assumes that different stores are substitutes

for consumers so that there is business stealing between different store locations. The revenue

of a given store in location i is given by ri (I). Variable profit of location i can be written as

ν̄ri (I), where ν̄ is taken from the data. There is also a location specific fixed cost fi. The

overall chain store profit function can be written:

Π (I) =
n∑
i=1

1[Ii = 1] (ν̄ri (I)− fi) (9)

The business stealing effect implies that the function (9) is submodular on a lattice and AER

can be applied to identify I?.

A.2.4 Antras et al. (2014)

Antras et al. (2014) study the intensive and extensive margin of a firm’s global sourcing de-

cision. The extensive margin decision can be cast as a combinatorial problem: an individual

firm in country k needs to decide from which countries i = 1, . . . , n to source inputs. Sourc-

ing from i incurs a fixed cost wifi. Conditional on sourcing from i the problem is an Eaton

and Kortum (2002) type intensive margin problem. We can then first solve the intensive

margin problem conditional on buying from i, and then rephrase the problem as a Boolean

one that fits our setup. The firm profit function can be written:
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Π (I) = φσ−1

(
γ

n∑
i=1

1[Ii = 1]
Ti

(τkiwi)
θ

)σ−1
θ

Bk − wk
n∑
i=1

1[Ii = 1] (wifi) (10)

φ is a firm specific productivity and Bk is a measure of market demand in the home market

k. γ is some constant, Ti is the mean of the source i Frechet productivity distribution, θ its

dispersion parameter, τki iceberg trade costs between countries k and i and wi the wage in

country i. As above σ is the elasticity of substitution across varieties. As the authors show

in the paper, when σ−1
θ

> 1 the profit function is supermodular. This is the assumption

the authors make in order to be able apply the Jia (2008) algorithm. Additionally, when
σ−1
θ
< 1, the opposite statements are true and the profit function is submodular. In either

cases the vector I? that maximizes (10) can be found by applying AER.

A.3 Additional Results and Counterexamples

A.3.1 An alternative sufficient condition for SCD

Definition. A function f : Bn → R is quasi-supermodular if the following two conditions

are satisfied:

f(I) ≥ f(min(I, I ′)) =⇒ f(max(I, I ′)) ≥ f(I ′)

f(I) > f(min(I, I ′)) =⇒ f(max(I, I ′)) > f(I ′).

A function f : Bn → R is quasi-submodular if the following two conditions are satisfied:

f(I) ≤ f(min(I, I ′)) =⇒ f(max(I, I ′)) ≤ f(I ′)

f(I) < f(min(I, I ′)) =⇒ f(max(I, I ′)) < f(I ′).

The next proposition shows that quasi-supermodularity is a weaker concept than super-

modularity. The same is true for quasi-submodularity and submodularity.

Proposition 2. If f is a supermodular function, then f is also quasisupermodular. If f is

a submodular function, then f is also quasi-submodular.

Proof. Suppose f is supermodular. Assume by contradiction it is not quasi-supermodular.

Then, if f(I) ≥ f(min(I, I ′)), then f(max(I, I ′)) < f(I ′). But that implies that f(min(I, I ′))+

f(max(I, I ′)) < f(I) + f(I ′), which is a contradiction. Similarly, if f(I) > f(min(I, I ′)),

then f(max(I, I ′)) ≤ f(I ′), which again gives us the same contradiction to supermodularity.

Therefore, f must be quasi-supermodular. An analogous proof shows that submodularity

implies quasi-submodularity.
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A.4 The Simple Plant Location Problem as a Submodular Com-

binatorial Discrete Choice Problem

The Simple Plant Location Problem (SPLP ) or Uncapacitated Plant Location Problem

(UPLP ) refers to a general class of operation research problems concerned with the optimal

choice of plants on a topography so as to minimize transportation costs while serving a set

of spatially distributed demand points. As the excellent early survey by Krarup and Pruzan

(1983) points out, the SPLP is one of the most studied problems in Operations Research,

since many other canonical problems can be mapped into it (eg. p−Center and p−Median

problems), the simple very general structure it provides and lastly the availability of a wide

range of effective solution methods. More recent surveys of the literature on the SPLP

framework are Cornuéjols et al. (1983), Owen and Daskin (1998) and Verter (2011). While

there exists many formulations of the SPLP framework, this paper is going to follow one

of the most commonly used ones due to Balinski (1965). In the next section we show how

to rewrite the SPLP problem as a combinatorial discrete choice problem with an objective

of the form Π : Bn → R. Next we show that the objective Π is submodular which allows

the application of AER to isolate I?. Finally, we show formally how the firm problem in

Arkolakis et al. (2013) can be mapped into the SPLP framework.

A.4.1 Writing the Simple Plant Location Problem as a Combinatorial Discrete

Choice Problems

In the baseline version of the SPLP , we are given a set N of potential facility locations and

a set D demand points. For any location i ∈ N , the fixed cost of opening facility i is fi. The

cost of serving demand point j from facility i is cij. Note that demand is fixed and there is

no intensive margin. The problem is then to find the profit maximizing set of facilities that

should be opened. The choice variable is λij which is 1 if market j is served from location i.

The SPLP is usually stated as the following minimization problem, see Balinski (1965):

min
{λij}i∈N,j∈D

∑
i∈N

∑
j∈D

cijλij +
∑
i∈N

fiθi

subject to
∑
i∈N

λij = 1 ∀i, j

θi ≥ λij ∀i, j

λij, θi ∈ {0, 1} ∀i, j
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The constraint on λij is imposed to ensure no market is served by two facilities. In models

with a fixed cost of exporting into a country is automatically satisfied.

This problem can easily be changed into a maximization problem by replacing cij with

c′ij = maxij cij − cij. Also the choice variable can be expressed as a Boolean vector I of

dimension N , with the ith entry of 1 corresponding to an open facility in location i. For a

given plant location choice I the payoff function, πk, for plant k is defined as follows

πi(I) =
∑
j∈D

((
max
k
c′kjIk

)
1

(
(max

k
c′kjIk) ≤ c′ijIi

))
− fiIi (11)

From this expression, we can get the cumulative profit from all locations:

Π(I) =
∑
i∈N

πi(I) =
∑
i∈N

∑
j∈D

((
max
k
c′kjIk

)
1

(
(max

k
c′kjIk) ≤ c′ijIi

))
− fiIi (12)

The decision being made here is to set up a a facility at a specific location. In this case, the

decision to set up a plant is synonymous with the decision to pay the fixed cost of a facility,

so Ik = θk. The objective is then to choose I ∈ {0, 1}n so as to maximize Π (I). So the

canonical SPLP formulation can be mapped into a combinatorial discrete choice problem

with the objective taking the form Π : Bn → R.

A.4.2 Submodularity of the Overall Profit Function

The objective function (12) exhibits the submodularity property. Adding an additional plant

will always weakly decrease the number of demand points served by any given previously

existing plant making the individual plant profit function (11) decreasing in the number

of other plants built. We can then exploit the additive separability property of the overall

objective function (12) in combination with lemma 1 to show that the problem is submodular.

This allows for the application of the techniques developed in this paper to the solution of

problems in the SPLP class.

Lemma 4. The profit function in the simple plant location problem is submodular.

Proof. Let I be such that Ii = 1 and Ik = 0 ∀k 6= i. Consider the profit function of an

individual plant in the SPLP problem derived above:

πi(I) =
∑
j∈D

((
max
k
c′kjIk

)
1

(
(max

k
c′kjIk) ≤ c′ijIi

))
− fkIk

Notice that since only plant i is operating, maxk c
′
kjIk = c′ijIi trivially since Ik = 0 ∀k 6= i

and c′lj ≥ 0 ∀l by definition. But then:
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πi(I) =
∑
j∈D

c′ijIi − fi

Now consider I ′ so that Ii = Is = 1 and Ik = 0 ∀k 6= i, s. For some j ∈ D now maxk c
′
kjI
′
k =

c′sjI
′
s. Denote by Di the set of destinations j for which maxk c

′
kjIk = c′ijIi. Note that Di ⊆ D.

But then:

πi(I) =
∑
j∈D

c′ijIi − fi ≥
∑
j∈Di

c′ijIi − fi = πi(I
′)

Note that πi(I
i→0) = πi(I

′,i→0) = 0 . The above inequality implies:

πi(I)− π(I i→0) ≥ πk(I
′)− π(I ′,i→0)

Which is the definition of submodularity. Hence πk is submodular on the Boolean lattice

space. Finally note that Π (I) =
∑

k πk (I). It follows from lemma A.1 that Π (I) is sub-

modular on Bn.

A.4.3 The Firm Problem in Arkolakis et al. (2013) as a Simple Plant Location

Problem

The firm problem in Arkolakis et al. (2013) can directly be mapped into the formulation in

equation (12) using a trick inspired by Hansen and Thisse (1977). We introduce a fictive

N + 1 location in which a plant can be built at zero fixed set up costs, ie. fN+1 = 0.

Additionally, goods can be shipped to any demand point j at zero cost so that cN+1j = 0 for

all j ∈ D. Intuitively this is necessary to account for the fact that in Arkolakis et al. (2013)

it may be optimal for a firm not to serve a market j from any of its plants if fixed costs are

prohibitively high. With this fictive plant in hand we can map the objects from the Arkolakis

et al. (2013) problem into objects in the equation (12). In particular fi corresponds to the

Arkolakis et al. (2013) fixed cost of setting up a plant in location i, while c′ij corresponds to

the Arkolakis et al. (2013) profit of serving country j from i net of fixed marketing costs.

The submodularity of the overall profit function in (12) then implies that the tools of this

paper can be employed to identify the profit maximizing strategy vector I?. Deleting its

N + 1th will then yield the optimal firm strategy in Arkolakis et al. (2013).

35


	Introduction
	 Combinatorial Discrete Choice Problems
	Combinatorial Problems: General Setup
	Single Crossing Differences
	Additional Restrictions in the Literature
	Analytical Return Functions
	Additively Separable Return Function


	Theory
	Definitions and Notation
	Main Results
	Relation with jia2008happens

	Games on a Lattice
	Setup
	Using AER to Locate Equilibrium Points 
	Special Cases
	Quadratic Games
	Two player Games


	Conclusion
	Tables and Figures
	Appendix
	Proofs of Results
	Examples of Pseudo-Boolean Return Functions in Literature
	jia2008happens
	arkolakis2013innovation
	holmes2011diffusion
	antras2014margins

	Additional Results and Counterexamples
	An alternative sufficient condition for SCD

	The Simple Plant Location Problem as a Submodular Combinatorial Discrete Choice Problem
	Writing the Simple Plant Location Problem as a Combinatorial Discrete Choice Problems
	Submodularity of the Overall Profit Function
	The Firm Problem in arkolakis2013innovation as a Simple Plant Location Problem



